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Abstract
Exact solutions to a nonlinear Schrödinger lattice with a saturable nonlinearity
are reported. For finite lattices we find two different standing-wave-like
solutions, and for an infinite lattice we find a localized soliton-like solution.
The existence requirements and stability of these solutions are discussed, and
we find that our solutions are linearly stable in most cases. We also show that
the effective Peierls–Nabarro barrier potential is nonzero thereby indicating
that this discrete model is quite likely nonintegrable.

PACS numbers: 61.25.Hq, 64.60.Cn, 64.75.+g

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation occurs ubiquitously [1] throughout
modern science. Most notable is the role it plays in understanding the propagation of
electromagnetic waves in glass fibres and other optical waveguides [2]. More recently it
has been applied to describe Bose–Einstein condensates in optical lattices [3]. Here we are
concerned with the DNLS equation with a saturable nonlinearity

iψ̇n + (ψn+1 + ψn−1 − 2ψn) +
ν|ψn|2

1 + µ|ψn|2 ψn = 0, (1)

which is an established model for optical pulse propagation in various doped fibres [4]. In
equation (1), ψn is a complex valued ‘wavefunction’ at site n, while ν and µ are real parameters.
This equation represents a Hamiltonian system with

H =
N∑

n=1

[
|ψn − ψn+1|2 − ν

µ
|ψn|2 +

ν

µ2
ln(1 + µ|ψn|2)

]
, (2)
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so that equation (1) is given by iψ̇n = ∂H
∂ψ∗

n
. The dynamics of equation (1) conserve, in addition

to the Hamiltonian H, the power P

P =
N∑

n=1

|ψn|2. (3)

In the above equations N is the number of lattice sites in the system. We note that a
transformation

√
νψn → ψn will replace ν by 1 and µ by µ

ν
in the above equations. Note also

that equation (1) is invariant under the transformation ψn → exp(iδ)ψn where δ represents an
arbitrary phase.

2. Exact solutions

For given system parameters ν and µ it can be shown, using recently derived [5] local and
cyclic identities for Jacobi elliptic functions [6], that equation (1) has two (cases I and II)
different temporally and spatially periodic solutions. Both solutions possess the temporal
frequency

ω = 2

(
1 − ν

2µ

)
. (4)

Using standard notation [6] for the Jacobi elliptic functions of modulus m the solutions can be
expressed as

Case I:

ψI
n = 1√

µ

sn(β,m)

cn(β,m)
dn([n + c]β,m) exp(−i[ωt + δ]), (5)

where the modulus m must be chosen such that

2µ

ν
= cn2(β,m)

dn(β,m)
, β = 2K(m)

Np

, (6)

and c and δ are arbitrary constants. We only need to consider c between 0 and 1
2 (half the

lattice spacing). Here K(m) denotes the complete elliptic integral of the first kind [6]. While
obtaining this solution, use has been made of the local identity

dn2(x,m)[dn(x + a,m) + dn(x − a,m)]

= −cn2(a,m)

sn2(a,m)
[dn(x + a,m) + dn(x − a,m)] + 2

dn(a,m)

sn2(a,m)
dn(x,m), (7)

derived recently [5]. In fact, given equation (1) and this local identity (and similar ones for
sn(x,m) and cn(x,m)), it was straightforward to obtain the two solutions presented here and
the third solution follows simply by taking the limit m → 1 of these two solutions as shown
below.

Case II:

ψII
n =

√
m

µ

sn(β,m)

dn(β,m)
cn([n + c]β,m) exp(−i[ωt + δ]), (8)

where modulus m now is determined such that

2µ

ν
= dn2(β,m)

cn(β,m)
, β = 4K(m)

Np

. (9)
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Figure 1. Illustration of the exact solutions of two types. ν = 1, µ = 0.3, ω = −1.33 and
c = t = δ = 0. Np = 5 (squares), Np = 10 (circles) and Np = 15 (triangles). Lines are guides
to the eye.

While obtaining this solution, use has been made of the local identity [5]

mcn2(x,m)[cn(x + a,m) + cn(x − a,m)]

= −dn2(a,m)

sn2(a,m)
[dn(x + a,m) + dn(x − a,m)] + 2

cn(a,m)

sn2(a,m)
cn(x,m). (10)

Note that the two solutions, equations (5) and (8), are translationally invariant.
The two solutions ψ I,II

n are illustrated in figure 1 for t = δ = c = 0. In both cases the
integer Np denotes the spatial period of the solutions. Both the solutions ψ I

n and ψ II
n reduce

to the same localized solution in the limit Np → ∞ (m → 1):

Case III:

ψ III
n = 1√

µ

sinh(β)

cosh([n + c]β)
e−i[ωt+δ] (Np → ∞), (11)

where β is now given by

sech β = 2µ

ν
. (12)

Again the frequency ω is given by equation (4). This solution is noteworthy in that it is very
similar in form to the celebrated exact soliton solutions of both the continuum cubic nonlinear
Schrödinger equation [7] and the (integrable) Ablowitz–Ladik lattice [8].

There are, as expressed by equations (6), (9) and (12), stringent conditions on the
parameters µ and ν for which these exact solutions exist. In cases I and II these limitations are
illustrated in figure 2, which shows that the solution ψ I

n only exists for parameter values below
the lower curve (circles). Similarly, the solution ψ II

n for periods Np > 4 only exists below the
upper curve (squares). As can be easily seen from equation (9) the ψ II

n solution does not exist
for Np = 4. However, it does exist for Np = 3, but only for parameter ratios µ/ν < 0. As
a result of the periodic boundary conditions both solutions become meaningless for Np < 3.
The solution ψ III

n exists for all parameter values ν � 2µ > 0.
For the ψ III

n solution, expressions for both the power equation (3) and the Hamiltonian
equation (2) can be obtained by using exact (Poisson) summation rules [9]

P III = 2

µ

sinh2(β)

β2
[β − 2K(m)E(m) + 2K2(m) dn2(2K(m)c,m)], (13)
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Figure 2. Illustration of parameter values µ, ν and Np for which the exact solutions are allowed.
Case I: 2µ/ν between 0 and cos2 π

Np
and Np � 3. Case II: 2µ/ν between 0 and 1/ cos2 2π

Np
and

Np � 3 except for Np = 4.

HIII = − 4

µ
sinh(β) +

(
1 − ν

2µ

)
4

µ

sinh2(β)

β2
[β − 2K(m)E(m)

+ 2K2(m) dn2(2K(m)c,m)] +
ν

µ2
2β. (14)

Here the modulus m must be determined such that

β = π
K(m)

K(m1)
, sech β = 2µ

ν
, (15)

where m1 = 1 − m is the complementary modulus and E(m) denotes the complete elliptic
integral of the second kind. For cases I and II analogous expressions can be obtained and they
are given in the appendix.

In a discrete lattice there is an energy cost associated with moving a localized mode (such
as a soliton or a breather) by a half lattice constant. This is called the Peierls–Nabarro (PN)
barrier [10, 11]. Having obtained the expression for HIII analytically in a closed form, we can
now calculate the energy difference between the solutions when c = 0 and c = 1/2, i.e. when
the peak of the solution is centred on a lattice site and when it is centred half-way between
two adjacent sites, respectively. We find that

�E ≡ HIII(c = 0) − HIII(c = 1/2) = −16m

µβ2
sinh2(β) sinh2(β/2)K2(m) < 0, (16)

that is, the energy is lowest when the peak of the solution is centred at the sites. Thus, there is
a finite energy barrier (i.e. the height of the effective PN barrier potential) between these two
stationary states due to discreteness. If the folklore of nonzero PN barrier being indicative of
non-integrability of the discrete nonlinear system is correct, this suggests that quite likely our
discrete model is non-integrable unlike the Ablowitz–Ladik model [8].

3. Stability analysis

In order to study the linear stability of the exact solutions ψ
j
n (j is I, II, or III) we introduce

the following expansion:

ψn(t) = ψj
n + δψn(t) e−iωt , (17)
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applied in a frame rotating with frequency ω of the solution. Substituting into equation (1)
and retaining only terms linear in the perturbation we get

iδψ̇n + (δψn+1 + δψn−1 − 2δψn) +

(
ω +

ν
∣∣ψj

n

∣∣2(
2 + µ

∣∣ψj
n

∣∣2)(
1 + µ

∣∣ψj
n

∣∣2)2

)
δψn

+
ν
∣∣ψj

n

∣∣2(
1 + µ

∣∣ψj
n

∣∣2)2 δψ∗
n = 0. (18)

Continuing by splitting the perturbation δψn into real parts δun and imaginary parts δvn

(δψn = δun + iδvn) and introducing the two real vectors

δU = {δun} and δV = {δvn} (19)

and the two real matrices A= {Anm} and B= {Bnm} by defining

Anm = δn,m+1 + δn,m−1 +

(
ω − 2 +

ν
∣∣ψj

n

∣∣2(
3 + µ

∣∣ψj
n

∣∣2)(
1 + µ

∣∣ψj
n

∣∣2)2

)
δnm, (20)

Bnm = δn,m+1 + δn,m−1 +

(
ω − 2 +

ν
∣∣ψj

n

∣∣2(
1 + µ

∣∣ψj
n

∣∣2)
)

δnm, (21)

where m ± 1 in the Kronecker δ means: m ± 1 mod N . Then equation (18) can be written
compactly as

−δV̇ + AδU = 0 and δU̇ + BδV = 0, (22)

where an overdot denotes time derivative. Combining these first-order differential equations
we get

δV̈ + ABδV = 0 and δÜ + BAδU = 0. (23)

The two matrices A and B are symmetric and have real elements. However, since they do
not commute AB and BA = (AB)T are not symmetric. AB and BA have the same
eigenvalues, but different eigenvectors. The eigenvectors for each of the two matrices need
not be orthogonal.

The eigenvalue spectrum {γ } of the matrices AB and BA determines the stability of the
exact solutions. If it contains negative eigenvalues the solution is unstable. The eigenvalue
spectrum always contains two eigenvalues which are zero. These eigenvalues correspond to
the translational invariance (c) and to the invariance of the solution ψ

j
n to a constant phase

factor e−iδ (i.e. translation in time), respectively. In figure 3 we show the eigenvalue spectrum
{γ } for the cases I and II for several periodicities Np. It is important to note that in this
figure we have N = Np. It turns out that the spectrum {γ } is independent of c. The figure
demonstrates that for N = Np, only the ψ I

n solution becomes unstable and this occurs only
for Np = 3. For all other values of Np both solutions are linearly stable. This also indicates
that the localized solution ψ III

n is linearly stable; and we have checked that this indeed is the
case in the entire existence interval.

The solutions ψ I
n, and ψ II

n exist for all lattices N = JNp where J is a positive integer.
However, we find ψ I

n to be stable only for J = 1, while ψ II
n is stable for all J .

Finally, it is worth pointing out that equation (1) also has an exact constant amplitude
solution

ψn(t) = ψ0 exp[−i(ωt − qn + δ)], (24)
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Figure 3. Illustration of the stability of the exact solutions. Shown is the eigenvalue spectrum {γ }
for the matrix product AB, ν = 1. Case I (left panel) and Np = 3 (triangles), Np = 4 (squares),
Np = 5 (stars), and Np = 10 (circles). Case II (right panel) Np = 3 (triangles), Np = 5 (stars)
and Np = 10 (circles).

where δ is a constant and ω satisfies the nonlinear dispersion relation

ω = 4 sin2(q/2) − ν|ψ0|2
1 + µ|ψ0|2 , (25)

where the wavenumber q = 2πp/Np in order to comply with the periodic boundary condition,
and p is an intger.

4. Conclusion

To summarize, we have presented two spatially periodic and one spatially localized exact
solutions of the DNLS equation with a saturable nonlinearity. We found these solutions to be
linearly stable in most cases. We also calculated the Peierls–Nabarro barrier for the localized
solution. These results are relevant for wave propagation in optical waveguides and doped
fibres [2, 4], Bose–Einstein condensates [3] as well as for many other nonlinear physical
applications. Note that a related continuum version of equation (1), which arises in the context
of the Fokker–Planck equation for a single mode laser, has been considered in [12]. It would
be important to search for ways of modifying the nonlinearity so that the PN barrier becomes
zero—a possible route to an integrable model.
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Appendix

In this appendix we give explicit expressions for H and P for the two spatially periodic solutions.
While the importance of the energy expression is obvious, we would like to emphasize that
the expressions for P could be used as a numerical diagnostic, for instance in keeping track of
a conserved quantity in a simulation involving these solutions.
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Inserting the solution given by equation (5) into equation (2) we get for the energy

HI = 2

µ

sn2(β,m)

cn2(β,m)


−Np(dn(β,m)− cs(β,m)Z(β,m)) +

(
1 − ν

2µ

) Np∑
n=1

dn2([n + c]β,m)




+
ν

µ2

Np∑
n=1

ln

(
1 +

sn2(β,m)

cn2(β,m)
dn2([n + c]β,m)

)
, (A.1)

where Z(β,m) is the Jacobi zeta function and cs(β,m) = cn(β,m)/sn(β,m). Also, use has
been made of the identity [5] dn(y,m) dn(y + a,m) = dn(a,m)− cs(a,m)Z(a,m) +
cs(a,m)[Z(y+a,m)−Z(y,m)] and the fact that

∑Np

n=1[Z(β(n+1+c),m)−Z(β(n+c),m)] =
0. From equation (3) we get for the power

P I = 1

µ

sn2(β,m)

cn2(β,m)

Np∑
n=1

dn2([n + c]β,m). (A.2)

Similarly, inserting the solution given by equation (8) into equation (2) we get for the energy

HII = 2

µ

sn2(β,m)

dn2(β,m)

(
−Np(m cn(β,m) − ds(β,m)Z(β,m)) +

(
1 − ν

2µ

)

×
Np∑
n=1

cn2([n + c]β,m)

)
+

ν

µ2

Np∑
n=1

ln

(
1 +

sn2(β,m)

dn2(β,m)
cn2([n + c]β,m)

)

= 2

µ

sn2(β,m)

dn2(β,m)


−Np[m cn(β,m) − ds(β,m)Z(β,m)]

+

(
1 − ν

2µ

) 
−(1 − m)Np +

Np∑
n=1

dn2([n + c]β,m)







+
ν

µ2


Np ln

(
cn2(β,m)

dn2(β,m)

)
+

Np∑
n=1

ln

[
1 +

sn2(β,m)

cn2(β,m)
dn2([n + c]β,m)

]
 ,

(A.3)

where again Z(β,m) is the Jacobi zeta function and ds(β,m) = dn(β,m)/sn(β,m). Also, use
has been made of the identity [5] m cn(y,m) cn(y + a,m) = cn(a,m)− ds(a,m) Z(a,m) +
ds(a,m) [Z(y + a,m)−Z(y,m)]. From equation (3) we get for the power

P II = 1

µ

sn2(β,m)

dn2(β,m)

Np∑
n=1

cn2([n + c]β,m)

= 1

µ

sn2(β,m)

dn2(β,m)


−Np(1 − m) +

Np∑
n=1

dn2([n + c]β,m)


 . (A.4)

In order to get the sums over the same expressions for HII and P II as for HI and P I we have
used the basic relations cn2(x,m) + sn2(x,m) = 1 and dn2(x,m) + m sn2(x,m) = 1. In the
continuum limit (small β, large Np) the sums may be replaced by integrals. First

Np∑
n=1

dn2([n + c]β,m) � QE(m)

β
= QK(m)

β

E(m)

K(m)
= Np

E(m)

K(m)
, (A.5)
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where Q = 2 in case I and Q = 4 in case II. The other sum
Np∑
n=1

ln

(
1 +

sn2(β,m)

cn2(β,m)
dn2([n + c]β,m)

)
� Np ln

(
π
2(β,m)

2
√

1 − mK(m) cn2(β,m)

)
, (A.6)

where 
(β,m) is the Jacobi theta function. For m → 1, equations (A.1) and (A.3) can
be used to determine the asymptotic interaction between two nonlinear solutions given by
equation (11).

References

[1] Kevrekidis P G, Rasmussen K Ø and Bishop A R 2001 Int. J. Mod. Phys. B 15 2833
[2] Eisenberg H S, Silberberg Y, Morandotti R, Boyd A R and Aitchison J S 1998 Phys. Rev. Lett. 81 3383
[3] Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353
[4] Gatz S and Herrmann J 1991 J. Opt. Soc. Am. B 8 2296

Gatz S and Herrmann J 1992 Opt. Lett. 17 484
[5] Khare A and Sukhatme U 2002 J. Math. Phys. 43 3798

Khare A, Lakshminarayan A and Sukhatme U 2003 J. Math. Phys. 44 1822 (Preprint math-ph/0306028)
Khare A, Lakshminarayan A and Sukhatme U 2004 Pramana (Journal of Physics) 62 1201

[6] Abramowitz M and Stegun I A (eds) 1964 Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables (Washington, DC: US Govt Printing Office)

[7] Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University Press)
[8] Scott A 1999 Nonlinear Science: Emergence & Dynamics of Coherent Structures (Oxford: Oxford University

Press)
[9] Saxena A and Bishop A R 1991 Phys. Rev. A 44 R2251

Boyd J P 1984 SIAM J. Appl. Math. 44 952
[10] Braun O M and Kivshar Yu S 1991 Phys. Rev. B 43 1060

Kivshar Yu S and Campbell D K 1993 Phys. Rev. E 48 3077
[11] Dauxois T and Peyrard M 1993 Phys. Rev. Lett. 70 3935
[12] Saxena A and Habib S 1997 Physica D 107 338


